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Abstract. Recent malware epidemics proved beyond any doubt that
frightful predictions of fast-spreading worms have been well founded.
While we can identify and neutralize many types of malicious code, often
we are not able to do that in a timely enough manner to suppress its un-
controlled propagation. In this paper we discuss the decisive factors that
affect the propagation of a worm and evaluate their effectiveness.
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1 Introduction

Computer viruses and worms are definitely not a new threat as they exist for
several decades. The striking difference between the “ancient” viruses and the
modern ones lies in the time-frame in which they operate. Ancient viruses needed
weeks or even months to propagate and reach a noticeable level of prevalence be-
cause of the completely different means of infection, such as diskettes, on which
they relied. On the contrary, modern viruses and worms utilize the Internet and
other high-speed networks achieving sizable infection rates. Theoretical studies
[44, 51, 52], but also empirical evidence [32] suggests that last generation worms
are perfectly capable of infecting a susceptible population in about 15 minutes.
The construction of rapid malcode is by no means an easy task. While thou-
sands of worms exist, only a small fraction managed to prevail in an observable
level and only a handful of them to create epidemic outbreaks. Similarly, though
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thousands biological pathogens survive, just a small percentage of them is able
to cause major health threat. Therefore it would be useful to stand on the ex-
perience of practical epidemiologists, so as to identify the major factors that
dominate the propagation of a biological pathogen and thereafter to try to cor-
relate these factors with components that may affect the virulence of computer
malware. The rest of the paper is organized as follows. Section 2 surveys the ex-
isting literature on biologically inspired computer security research. In Section
3 we discuss the effective parameters that can lead to infectious diseases epi-
demics and draw the first analogies between biological and computer virulence.
In Sections 4 and 5 we present and analyze these factors, while in Section 6 we
fit these findings in the concept of Computer Epidemiology. Section 7 concludes
this paper.

2 Related Work

The similarities between biological pathogens and computer malware are seman-
tically evident, as the most popular description of malcode suggests. Computer
virus is the term that F. Cohen with his supervisor L. Adleman coined to de-
scribe the earliest and simplest forms of malicious software [9, 10]. Even before
the formalism that was developed from Adleman’s term and Cohen’s work, an
other category of misbehaving programs was described with another biological
analogy as rabbits [45]. The similitude of computer malcode and live pathogens
was not overlooked by the research community. In particular, researchers [28]
looked in great detail characteristics of computer worms and well known biolog-
ical diseases and tried to compare specific types of pathogens with prominent
species of malware and examine their most important properties in regard to
their propagation success. Other efforts [54] concentrated on public health poli-
cies that are in place against major epidemics (Acquired Immune Deficiency
Syndrome – aids) and proposed equivalent public policies for computer mal-
ware. An extensive review of the literature reveals that two basic strategies are
available to tackle the malware problem: A microscopic approach that extends
the analogies between the biological viruses and computer malware and tries
to develop artificial systems with similar functionality to the human immune
system and a macroscopic methodology that employs epidemiological tools to
gain insights in the propagation dynamics of rapid malcode as happens with the
infectious diseases.

Many efforts focused on the application of the basic mechanisms of the im-
mune system to computer security. Forrest et al. [14, 15, 43] implement some
immunological functions paying attention to the mechanism that distinguishes
self to non-self elements of the human body so as to embed a similar tech-
nique to computer systems that is capable of recognizing legitimate use from
abuse. A large part of their work has found application to the ’pH’ patch for the
Linux kernel [42] with promising results, while some other efforts that also use
immunological concepts are in early stages [34]. Aickeling & Greensmith claim



that the insufficiency of various artificial immune systems to address the prob-
lem of computer security could be due to use of older immunological models. In
their work they employ the most recent immunological theories. In collaboration
with practical immunologists they implement two algorithms, the Dendritic Cell
Algorithm (dca) [21] and the Toll-Like Receptor Algorithm (TLR) [1]. These
algorithms are part of the Danger Theory Project [11], which adapts the recent
theories of immunologists. According to the Danger Theory, a complex signaling
mechanism is responsible for the activation of the immune system, rather the
simplistic ’non-self’ versus ’self’ principle [29]. The fact that the Danger Theory
is not unanimously accepted in the medical world [31], raises some questions
about its effectiveness as viable model for Artificial Immune Systems.

Burgess [8] dealt with the most basic foundations of biology such as health
and sickness and tried to express them as security policies. Many of his ideas have
been realized in the cfengine project [7]. Of particular interest are his remarks
about redundancy, which he founds of limited use in computer security. On the
other hand, others base their work on this concept and accept as unavoidable the
loss of some computer systems. Though this loss is not pleasant at larger scale
can act as an alarm for the majority of the networked components [48]. According
to previous research [49, 50] principles of Computer Hygiene could slow down
the spread of malicious agents. Another biological inspired approach focuses on
models that try to mimic the functionality of genomics and protomics. Goel
and Bush [19] propose a system that is able to create new virus - signatures by
mutation of the existing signatures. Shafi and Abbass [40] present in their work
a more holistic approach as they consider several Complex Adaptive Systems
with foundations in the physical world. They examine paradigms of security
systems that utilize Genetics Based Machine Learning, Swarm Intelligence and
Coevolution.

Most of the conducted research tackles specific aspects of computer virulence
in order to find appropriate means to minimize the risk of a malware epidemic.
This paper investigates the joint effects of the factors that dominate the prop-
agation of malicious agents. Three major components seem to dominate the
propagation of a worm, the Infection Propagator, the Target Locator and the
Worms Virulence.

3 Infection Propagator

The type of the attacked vulnerability is one of the most critical factors that
heavily affect the virulence of a worm. Generally what influences the outcome of
that choice, could be best described by the prevalence of the exploited vulner-
ability, the age of the vulnerability at time of exploitation and the exploitation
difficulty of the attacked vulnerability.



3.1 Vulnerability Prevalence

Worm writers normally prefer to infect the largest possible number of susceptible
systems. To maximise the number of the contaminated systems it is necessary for
a worm to exploit a popular vulnerability. As [18, 17, 20] showed, the homogene-
ity of operating systems and applications is perfectly suited for worm writers.
The fact that up to 95 percent [35] of all the computer systems in the world
use some version of Microsoft’s Windows operating system and the majority of
them have also a version of Microsoft’s Office installed make them attractive
targets for any kind of attack. Given that Microsoft’s operating systems and
applications exhibit a large number of vulnerabilities renders the situation even
worse. The OpenBSD operating system on the other hand, which according to
its authors, suffered ‘only two remote holes in the default install, in more than
10 years’ and occupies less than 1 percent share is obviously less attractive as
a target. This asymmetry leads directly to a constantly increasing number of
attacks against the popular operating systems and applications making their
use even more insecure. The monocultures have also significant impact on other
aspects of the worm’s development process. The possibility of contaminating up
to 95 percent of the susceptible population using only a single infection vector
lowers the bar regarding the required skills of a worm writer. Complicated mal-
code, such as the Slapper worm [3] necessitate extra work to utilize multiple
attack vectors in order to infect a number of different distributions of the Linux
operating system thus requiring much more effort from a worm writer to achieve
similar effects with a worm that operates in a homogeneous environment. It has
yet to be decided whether we prefer to have highly homogeneous environments
so as to avoid the cost of portability and to further enhance the standardiza-
tion of software development, or we should pay more attention to the security
disadvantages of that approach and start building more heterogeneous systems.
Even if we stick to the current monoculture, whether we have other means to
diminish these effects and whether it is possible to obtain software diversity as
a countermeasure, are nevertheless open questions.

3.2 Age of the Vulnerability at Time of Exploitation

The cycle from discovering a vulnerability till the development of a patch is a
lengthy process that requires a number of intermediate steps. Obviously, recently
discovered vulnerabilities are much more promising from a worms’ writer per-
spective, because most users need several days, if not weeks or longer, to update
their systems. If a vulnerability is recent enough it is highly probable that a
significant number of systems will be unpatched and hence unprotected. Recent
evidence indicates that modern malcode tends to minimise the time interval be-
tween the disclosure of a vulnerability and its exploitation. The Witty worm
[41] took advantage of a vulnerability that was announced only the day before,
however the great fear is for worms that will exploit an unknown or zero-day vul-
nerability. To protect better against known threats the standard methodology



followed by vendors, researchers and system administrators involves: vulnera-
bility discovery, patch development and testing and vulnerability announcement
and patch deployment.

This procedure showed positive results, but also highlighted a number of
downsides. When a vulnerability is announced, both the legitimate users and
the malicious crackers become aware of it. Thus, adversaries start actively seek-
ing susceptible non-patched systems in order to exploit them. It is important
to note that the technical skills required to discover a vulnerability are quite
different and much higher than to exploit a public announced one. Furthermore,
the reverse-engineering of a patch offers valuable information to an adversary
allowing him to develop in a lesser time an exploit for the specific vulnerabil-
ity. Recent research [39] provides provocative but also sound arguments to keep
some discovered vulnerabilities secret, questioning the way we handled the vul-
nerabilities disclosure procedure till now. We are confident that this and other
related studies [4] will initiate some very interesting debates in the near future
regarding whether, when and who should publicly announce vulnerabilities.

3.3 Exploitation Difficulty

As security becomes a major factor during the software development lifecycle
not only the number of vulnerabilities diminishes, but also they become much
more difficult to be exploited. Hence we can observe a switch from the traditional
and easy to implement stack smashing techniques to much more sophisticated
arc injections, pointer subterfuge and heap smashing attacks [38]. While these
developments are overall positive, they lead to a new breed of malicious crackers
with exceptional skills. Unfortunately these crackers don’t limit their operations
only to breaking systems but also write highly advanced worms such as the
Slapper worm. These advancements seem to conclude the shift of successful
worm writers from disgruntled teenagers with limited abilities (also known as
script kiddies, because they tend to use already available tools and code instead
of developing their own) to highly skilled malevolent programmers. It remains
to be seen what other measures or designs should be embedded in the future
programming languages in order to further limit the space in which the malicious
crackers operate.

4 Target Locator

A worm, in order to propagate successfully, should have an efficient target loca-
tor. Staniford et al showed the great importance of the propagation strategy of a
worm as different propagation dynamics can cause completely different outcomes
in the spread of a worm. In their seminal work [44] they presented a short-list of
the most eminent target locators namely Random Scanning, Localized Scanning,
Hit-list Scanning, Permutation Scanning, Topological Scanning and argued for
or against their efficiency. They also coined the terms Warhol Worm and Flash
Worm.



5 Worm Virulence

Pathogens, microbes and parasites share a common behavior with artificial
viruses regarding their propagation, because of their virulence. The virulence
of a microorganism (such as a bacterium or virus) is defined as a measure of the
severity of the disease it is capable of causing [30]. Ebola hemorrhagic fever has
one of the highest mortality and fatality rates and therefore is able to eradicate
small villages, but because of the severe symptoms and the short incubation
time is almost never spread over large geographic areas [37]. On the contrary
the influenza virus has usually mild symptoms and therefore the patients neglect
to search for cure during the early phases of the infections, which turns them to
a carriers of the disease to a large number of the population. During the 20th
century the influenza A is responsible for deaths of 20 to 40 million persons [47],
while the Spanish flu [6] is still considered as one of the worst pandemics ever.
The biological analogy between the destructiveness of the malware, measured by
the rate of worm-induced host mortality, and the parasite virulence has brought
to general attention the underestimated, but nonetheless critical factor of the
effectiveness of worm virulence. Most of the successful worms did not carry an
explicitly destructive payload [16]. Undoubtedly the more harmful a worm is,
the more attention it attracts. Therefore, it is highly probable that if a worm
has been developed just for fun or for surveillance purposes without damaging
properties, it will not be easily noticed.

On the other hand, Hofmeyr [22] argues that the virulence of malware is a far
more complicated issue and poses interesting questions regarding the interaction
between different types of malware coexisting in the same host. Though these
interactions have been studied in biology [53], they are still neglected in the
case of malware. The consequences of this omission may become evident in the
feature as it is quite common for different types of malware to compete for the
same resources. Malware writers started to use to their benefit the spread of the
other types of malcode as it can be seen from the infection techniques of the
Nimda worm which took advantage of the Code Red II and Sadmind backdoors.
Often worm writers tend to act antagonistically as was with the heavily noticed
Netsky – MyDoom wars, but most of the times malcode works synergistically.
An arguable [33] solution to slowdown most of the existing worms proposes the
release of ‘good’ worms that will search and eliminate both the malicious worms
by deleting them and simultaneously reduce the number of the susceptible hosts
by upgrading specific vulnerabilities making them immune to future attacks that
target the specific vulnerabilities [26, 46].

6 Computer Epidemiology

As showed in the previous sections many factors contribute to the success or the
failure of a worm. To which extent each one of them affects their overall per-
formance and consequently where we should concentrate our efforts to suppress
their spread are still open questions which we will have to focus on in the near



future. Numerous renowned scientists, including Daniel Bernoulli, Ronald Ross,
Lowell Reed and Wade Hampton Frost, combined epidemiology with mathemat-
ical models to establish Mathematical Epidemiology. William Ogilvy Kermack
and Anderson Gray McKendrick [25] however, were responsible for the most
widely accepted mathematical model to describe the progress of an epidemic,
the General Epidemic Model. Based on that model and by using the following
three differential equations, where N is the fixed population size, S is the number
of the susceptible hosts, I is the number of the infected hosts, R is the num-
ber of the recovered, quarantined or deceased individuals, β is the pairwise rate
of infection, γ is the removal rate and under certain assumptions such as the
homogeneous mixing of the population, it is possible to depict accurately the
circulation of a disease.

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI (3)

given that the population size is constant

N = S(t) + I(t) +R(t) (4)

In our effort to correlate the variables of this model, which is also known as
S-I-R (Susceptible-Infective-Recovered) model, with the physical quantities of
an epidemic, we will find striking similarities between the spread of biological
viruses and the propagation of computer worms. Kephart was the first, who in
his seminal work introduced McKendrick’s epidemiological models to describe
the spread of computer viruses [23, 24]. While he is the founder of computer
epidemiology at that time the propagation speed of malicious code did not con-
stitute a major threat. It was only shortly after the malware epidemics of Code
Red, Code Red II and Nimda that it was made clear that traditional approaches
to protect against malicious code, were no longer sufficient. Hence, Staniford et
al [44] started to investigate worms’ propagation dynamics under the prism of
epidemiology with remarkable success. Since then, a lot of effort has been put
into the improvement and finetuning of these models [55].

The following interpretation of biological epidemiology in a computer network
context is our own and may only slightly differ from other established approaches,
but we believe that are closely related and can sufficiently explain the three
essential ingredients of worms’ effectiveness, which we presented in the first part
of the paper.

– N : the fixed population size. In computer epidemiology, it is usually the total
number of hosts connected to the Internet, if the spread of a given worm is to
be examined.

– S: the number of the susceptible hosts. In our context this means comput-
ers running the application or operating system that the virus targets. As



discussed in the third section of this paper, the more prevalent an operating
system or an application is, the more likely to get exploited in case of an
vulnerability and the sooner the susceptible population will become infected.
Therefore, the diversity in our digital infrastructure is not an unnecessary
luxury, but an essential precaution.

– I: the number of the infected hosts. Our collective efforts should focus on
minimizing that set.

– R: the number of the recovered, quarantined or deceased individuals. In a
malware epidemic R represents patched or well hardened systems, resilient to
the exploited vulnerabilities. It is clearly to our best interest to convince users
to keep their systems secured and updated and thus to have R maximized.
As the age of an vulnerability decreases, is more difficult to have the majority
of systems updated. Moreover, if a worm utilizes a zero day exploit, the only
way to increase R is to rely on external security mechanisms, such as firewalls,
in the hope that way a malcode attack can be intercepted. Of course, there
is also another aspect of R. In a similar way to the biological death of some
part of the population due to a pathogen, also some computer systems can
be damaged from a destructive worm. Therefore a super virulent worm might
face significant challenges to its further propagation.

– β: the pairwise rate of infection. The larger β this is, the more rapidly a worm
spreads. In order to increase β malcode writers employ, usually intuitively, var-
ious techniques. Characteristic examples are the spawning of multiple threads
of the target locator as in the case of the Code Red Worm or fitting the whole
worm code in a single UDP packet to eliminate TCP connection latency [32].

– γ: the removal rate, either via disinfection, isolation or death in the physical
world. During a malware epidemic a large γ would obviously help the contain-
ment of a worm. This can be attributed to either an effective mechanism to
timely provide patches to vulnerable systems or to a very destructive payload.
Contrary to the common belief, a very harmful worm could hinder its further
propagation leading to its extinction.

Another important parameter that does not appear directly to the aforemen-
tioned equations is ρ the relative removal rate which is defined as

ρ ≡ γ

β
(5)

An epidemic outbreak is possible only when the number of initial susceptible
population S0 > ρ.

Of course that depends also on the underlying network topology, as useful
theoretical studies have indicated [27] with implicit implications for scale-free
graphs [36], which represent the majority of most technical and technosocial
networks [2, 5, 13, 12]. The developments in computer epidemiology allow us to
understand, model and accurately predict the spread of malicious software, which
is necessary for the implementation of effective network defenses and automatic
containment mechanisms capable to suppress its propagation in the available
time frame.



7 Conclusion

Given the dependency of modern societies on digital infrastructures the rapid
malcode is a serious problem. The most advanced nations strive to implement ef-
fective cyber-defences against the new generation of malware-based threats. The
development of malcode detection algorithms that are applicable to anti-virus
programs or host-based intrusion detection systems have proven useful, but inad-
equate to contain rapidly spreading malware epidemics. The microscopic analysis
is nonetheless essential to disinfect or protect a system, once a worm has gained
access to it. On the other hand to secure the operational availability of critical
information, communications, and control systems a strategic approach is re-
quired. In medicine, microbiologists and epidemiologists act complementary to
ensure timely identification of new threats and provide the best possible protec-
tion of the susceptible population. In our domain a similar methodology should
be applied to fight efficiently digital threats.
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